61 research outputs found

    Bad Communities with High Modularity

    Full text link
    In this paper we discuss some problematic aspects of Newman's modularity function QN. Given a graph G, the modularity of G can be written as QN = Qf -Q0, where Qf is the intracluster edge fraction of G and Q0 is the expected intracluster edge fraction of the null model, i.e., a randomly connected graph with same expected degree distribution as G. It follows that the maximization of QN must accomodate two factors pulling in opposite directions: Qf favors a small number of clusters and Q0 favors many balanced (i.e., with approximately equal degrees) clusters. In certain cases the Q0 term can cause overestimation of the true cluster number; this is the opposite of the well-known under estimation effect caused by the "resolution limit" of modularity. We illustrate the overestimation effect by constructing families of graphs with a "natural" community structure which, however, does not maximize modularity. In fact, we prove that we can always find a graph G with a "natural clustering" V of G and another, balanced clustering U of G such that (i) the pair (G; U) has higher modularity than (G; V) and (ii) V and U are arbitrarily different.Comment: Significantly improved version of the paper, with the help of L. Pitsouli

    On the Nash Equilibria of a Simple Discounted Duel

    Full text link
    We formulate and study a two-player static duel game as a nonzero-sum discounted stochastic game. Players P1,P2P_{1},P_{2} are standing in place and, in each turn, one or both may shoot at the other player. If PnP_{n} shoots at PmP_{m} (m≠nm\neq n), either he hits and kills him (with probability pnp_{n}) or he misses him and PmP_{m} is unaffected (with probability 1−pn1-p_{n}). The process continues until at least one player dies; if nobody ever dies, the game lasts an infinite number of turns. Each player receives unit payoff for each turn in which he remains alive; no payoff is assigned to killing the opponent. We show that the the always-shooting strategy is a NE but, in addition, the game also possesses cooperative (i.e., non-shooting) Nash equilibria in both stationary and nonstationary strategies. A certain similarity to the repeated Prisoner's Dilemma is also noted and discussed

    Cops and Invisible Robbers: the Cost of Drunkenness

    Get PDF
    We examine a version of the Cops and Robber (CR) game in which the robber is invisible, i.e., the cops do not know his location until they capture him. Apparently this game (CiR) has received little attention in the CR literature. We examine two variants: in the first the robber is adversarial (he actively tries to avoid capture); in the second he is drunk (he performs a random walk). Our goal in this paper is to study the invisible Cost of Drunkenness (iCOD), which is defined as the ratio ct_i(G)/dct_i(G), with ct_i(G) and dct_i(G) being the expected capture times in the adversarial and drunk CiR variants, respectively. We show that these capture times are well defined, using game theory for the adversarial case and partially observable Markov decision processes (POMDP) for the drunk case. We give exact asymptotic values of iCOD for several special graph families such as dd-regular trees, give some bounds for grids, and provide general upper and lower bounds for general classes of graphs. We also give an infinite family of graphs showing that iCOD can be arbitrarily close to any value in [2,infinty). Finally, we briefly examine one more CiR variant, in which the robber is invisible and "infinitely fast"; we argue that this variant is significantly different from the Graph Search game, despite several similarities between the two games
    • …
    corecore